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INTRODUCTION

Le but de mon stage à l’Institut de Mathématiques de Marseille est de comprendre
l’article [Bea83] de A. Beauville sur une décomposition pour les variétés kähleriennes
dont la première classe de Chern s’annule. Ce théorème est la traduction pour les
variétés complexes d’une théorème de décomposition pour les variétés riemanniennes
et m’a amené naturellement aux trois tâches suivantes:

1. Comprendre la décomposition pour les variétés riemanniennes, qui est un résul-
tat central de la théorie riemanienne. Ce théorème de decomposition était une
contribution collective de générations de mathématiciens, de G. de Rham et E.
Cartan à M. Berger. Mes références étaient [Joy00] et [Ber03] pour les grandes
idées, puis [Sak96] pour les détails.

2. Comparer de différentes notions et notations développées dans la théorie rieman-
nienne et la théorie complexe. Lorsque l’on travaille dans l’interface de ces deux
théories, c’est une étape très essentielle et le livre [Huy05] y a consacré presque
2 chapitres (chapitre 1, puis l’appendice du chapitre 4).

3. La traduction (Théorème 28) n’étant pas formellement évidente, il me faut aussi
m’habituer à la boite à outils qu’a utilisée A. Beauville. Cela contient essen-
tiellement le théorème de Yau, le théorème de Bieberbach et la décomposition
de Cheeger-Gromoll que j’ai appris dans [Bł12], [Bus85], [CG71] et [Bes07].

Ce mémoire se structure de manière suivante.

1. Le théorème de de Rham, présenté dans la section 1, permet de décomposer une
variété riemannienne en somme (orthogonale) de variétés où l’action d’holonomie
agit de manière irreductible sur chaque fibre tangente. On s’intéresse donc aux
variétés irréductibles, qui sont les éléments constitutifs des variétés riemanni-
ennes. On verra dans cette section que tout groupe/ toute representation n’est
pas groupe/representation d’holonomie d’où la question que l’on pose naturelle-
ment: quels groupes/representations sont d’holonomie?

2. La théorie de groupes de Lie, développée par E. Cartan nous fournit une liste de
groupe d’holonomie des espaces symétriques. Ce résultat sera présenté dans la
section 2.

3. La liste de Berger dans la section 3 nous donne tous les possibilités d’un groupe
d’holonomie d’une variété non-symétrique irréductible. Le théorème de Berger
repond complètement à la question posée au-dessus, il nous permet aussi de
voir que les variétés riemanniennes Ricci-plates sont, à un revêtement près, les
produits d’un espace euclidien avec des variétés speciales unitaires et des variétés
symplectiques irréductibles.
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4. Dans la section 4, on verra la réponse de S.T. Yau pour une question posée par E.
Calabi, dont une conséquence dans notre contexte est que les variétés rieman-
niennes d’holonomie dans SU(m), si on oublie leur métrique tout en gardant
la structure (presque) complexe, sont exactement les variétés de type kählerien
et de fibré canonique trivial (ou de première classe de Chern nulle si elle sont
simplement connexes). Le théorème de Yau nous permet de définir les variétés
dite de Calabi-Yau.

5. La décomposition de Cheeger et Gromoll décrit un phénomène remarquable des
variétes riemanniennes complètes de courbure de Ricci non-négative: la variété
se décompose en produit le long d’une droite géodésique. Une conséquence de
ce théorème fournit un détail technique (la compacité) dans le théorème de Bo-
gomolov et Beauville. Le dernier sera présenté dans la section 6 où l’on mettra
en jeu toutes les technologies introduites auparavant.

6. Le mémoire se conclut avec de nouveaux développements du résultat de Bogo-
molov et Beauville dans section 7. On expliquera aussi un nouveau résultat de
Campana, Demailly et Peternell dans [CDP12] plus précisément un théorème de
décomposition des variétés dont la courbure de Ricci est non-négative.

On note que toute variété dans ce mémoire est lisse et de dimension finie. Toute
connection est de Levi-Civita et tout transport parallèle est par rapport à la connection
de Levi-Civita.

Je souhaite presenter dans ce mémoire les idées aussi claires que possible, c’est la
raison pour laquelle j’y inclus séparément une partie manuscrite où j’ai détaillé les
preuves de quelques énoncés simples ou de nature calculatoire (les calculs de champs
de Jacobi par exemple). Cette partie contient aussi mes solutions pour des exercices
de [Sak96] pour la partie riemannienne et de [Huy05] pour la partie complexe.
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1. De Rham decomposition

1
DE RHAM DECOMPOSITION

1.1 Decomposition theorem of de Rham

We observe that if a manifold (M, g) is globally a product (M1, g1) × (M2, g2) then
Holg(M) = Holg1(M1)×Holg2(M2) and the holonomy representation ofM is reducible.
A result of de Rham says that one can decompose a Riemannian manifold as product
of ones with irreducible holonomy representation.

Theorem 1 (De Rham decomposition). Given (M, g) a simply-connected and com-
plete Riemannian manifold, there exists a unique decomposition up to isometry and
permutation of factors

(M, g) =
n∏
i=1

(Mi, gi)

where (Mi, gi) are complete, simply connected Riemannian irreducible manifolds. More-
over the holonomy representation of M over TxM is the product of holonomy repre-
sentations of Mi over Txi

Mi where x = (x1, . . . , xn)

Sketch of proof. The proof of this theorem contains two steps:

1. Remark that if the holonomy group is reducible then locally M is a product
of Riemannian manifolds, i.e. for every x ∈ M there exists a neighborhood U
containing x with (U, g) = (M1, g1)× (M2, g2).

2. Obtain the global product structure from local one. This is where completeness
is used.

We now discuss the first point with a bit more details. Suppose that TxM = Ux⊕Vx
where Ux, Vx are stable under action of holonomy group, then by transporting Ux, Vx
to the tangent space of any point y (as they are stable by holonomy, the result is
independent of the curve along which the transport is taken), we obtain then two
subbundles A and B of TM over M that are stable by parallel transport. Then for
every vector field uA in A and v in TM , ∇vuA ∈ A. As the Levi-Civita connection
is torsionless, one deduces [uA, vA] = ∇uA

vA − ∇vA
uA remains in A. By Frobenius

theorem, locally at a point x ∈ M , there exist two manifolds M1,M2 whose tangent
spaces are A and B.
Theorem 2 (Frobenius). Given a distribution D that associates to each point x a k
-dimensional hyperplane of TxM such that:

1. D varies smoothly, i.e. for every x0,there exist k smooth vector fields locally
defined near x0 such that at each point x close to x0, they form a base of D(x).
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1. De Rham decomposition

2. D is stable by Lie bracket, i.e. for every vector fields X, Y on M that take value
in D, [X, Y ] takes value in D.

Then at each point x ∈ M , there exists a maximal k -dimensional sub-manifold N
of M containing x such that D(y) is the tangent of N at y for every y ∈ N . The
maximality means that every sub-manifold of M that satisfies this condition is an open
sub-manifold of N .

For a complete proof that M is isometric to M1 ×M2, see [Sak96] (Lemma 6.8-
Theorem 6.11, chapter III).

1.2 Uniqueness

We note that the decomposition is unique in the following sense:

Proposition 2.1 (Uniqueness of de Rham decomposition). If M is decomposed as
p1 : M −→ E × ∏Mi and p2 : M −→ E ′ × ∏M ′

j where Mi,M
′
j are irreducible and

E,E ′ are maximal Euclidean components (i.e. none of Mi,M
′
j are isometric to R).

Then up to a rearrangement of indice j the composed map f = p2◦p−1
1 : E×∏Mi −→

E ′ ×∏M ′
i are product of the isometries fE : E −→ E ′ and fi : Mi −→M ′

i .

We first explain the appearance of Euclidean components E,E ′. They come from
the parallel transport of trivial representations appeared in the decomposition on each
fiber. We call them Euclidean because they are, up to an isometry, Rk with the usual
metric. This follows from the fact that R with any Riemannian metric is isometric to
R with the Euclidean metric.

We first note that the uniqueness stated in Proposition 2.1 comes from the unique-
ness of the decomposition of each tangent fiber, we have the following lemma.

Lemma 3 (Uniqueness of fiber decomposition). Let f : M −→ M ′ be an isometry
that send x ∈M to y ∈M ′. Let

TxM = E ⊕⊥
⊥⊕
i

Vi, TyM
′ = E ′ ⊕⊥

⊥⊕
j

V ′j

be a decomposition of TxM and TyM
′ as direct sum of trivial subspaces E,E ′ and

irreducible non-trivial subspaces Vi, V ′j under holonomy action. Then up to a rear-
rangement of j, the pushforward f∗ send E to E ′ and Vi to V ′i .

Remark 1. One may note that a similar result is not true for general representations:
one can only prove the uniqueness of the irreducible factors up to isomorphism and
their multiplicity. But the individual irreducible summands might not map to individual
summands (however if one groups all irreducible summands of the same type, then each
group maps to another).

The supplementary property of holonomy representation put into use here is the
following:
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1. De Rham decomposition

Remark 2. The holonomy representation H ⊂ SO(V ) on a fiber V = TxM satisfies
the property (H): if V = V1 ⊕⊥ V2 where Vi are stable by H then H = H1 ×H2 where
Hi := {h ∈ H : h|Vj

= Id, j 6= i}. It is obvious that H ⊃ H1 × H2, the other
inclusion is a consequence of de Rham decomposition along V1, V2 and the fact that
Hol(M1 ×M2) = Hol(M1)×Hol(M2).

An example of representation that does not satisfies this property (H) is the group
G = {±I2}. Take Vi = Rei, then G1 = G2 = {I2} therefore G1 × G2 6= G. This
also illustrates the fact that not every group (representation) is a holonomy group
(representation).

We prove the following lemma, which implies Lemma 3.

Lemma 4 (Uniqueness of representation decomposition). Let G ⊂ SO(V ) be an or-
thonormal representation on a finite dimensional vector space V with property (H).
Given any two orthogonal decompositions

V = E ×
∏
Vi = E ′ ×

∏
V ′j

where G acts trivially on E,E ′, and Vi, V ′j are irreducible and of dimension larger than
2, one has E = E ′ and Vi = V ′i up to a rearrangement of index j.

Moreover, given J ∈ HomG(V, V ) ∩ SO(V ) then J sends E and Vi to themselves.

Proof. Note that since action of G is special orthonormal, any one dimensional sub-
space of V stable by G is trivial under G, that explains why we supposed Vi, V ′j are of
dimension larger than 2. It suffices to see that every irreducible subspace N of V is
either contained in E or equal to Vi.

Let pri and prE be orthogonal projection of V to Vi and E. As E and Vi are G
-stable, these projections are G -invariant. Let Ni = pri(N), then Ni is a subspace of
Vi stable by G, hence either 0 or all Vi. If all Ni = 0 then clearly N is perpendicular
to ⊕i Vi, that is N ⊂ E. If prE(N) 6= 0 then HomG(N,E) 6= 0 since it contains prE.
Since N is irreducible, N is G -isomorphic to an irreducible component of N by prE,
therefore N is G -trivial hence N ⊂ E. Therefore one can suppose that at least one
Ni = Vi and prE(N) = 0, i.e. E ⊥ N . Note that pri is bijective by Schur lemma.

Let Gi = {g ∈ G : g|Vj
= Id ∀j 6= i} then Fix(∏j 6=iGj) = E ⊕ Vi, in fact if

v = e+∑
vi ∈ Fix(∏j 6=iGj) where e ∈ E, vk ∈ Vk, one has gjvj = vj ∀gj ∈ Gj, hence

gvj = vj∀g ∈ G, hence vj = 0. Now note that as pri commutes with G and Ni is fixed
by ∏j 6=iGj, N is also fixed by ∏j 6=iGj. Therefore N ⊂ E ⊕⊥ Vi, hence N = Ni = Vi
as N ⊥ E.

For the last point, note that as J commutes with all elements of G, J sends
Fix(∏j∈AGj) to itself. Therefore J |E : E −→ E and J |E⊕Vi

: E ⊕ Vi −→ E ⊕ Vi,
hence by orthogonality J sends E and Vi to themselves.
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1. De Rham decomposition

1.3 Application of uniqueness lemma: decomposi-
tion for Kähler manifold

Now let apply the de Rham decomposition to a complete Riemannian manifoldM with
holonomy U(n) ⊂ SO(2n) (called a Kähler manifold). There exists on a fixed fiber
TxM an automorphism J that preserves the Riemannian metric and satisfies J2 = −1.
By transporting J to every other fibers of TM one obtains a almost complex structure
on M .

Applying Lemma 4 to J which obviously commutes with G an orthonormal rep-
resentation, one can see that such structure J passes to every manifold Mi and the
Euclidean component Rn and remains parallel on these manifolds. We proved that M
is decomposed to Cn/2×∏Mi whereMi are Kähler manifold. The decomposition map
is both a Riemannian isometry and a isomorphism between complex manifold (i.e. its
preserves complex structure).
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2. Symmetric spaces and Lie groups

2
SYMMETRIC SPACES AND LIE GROUPS

2.1 Symmetric space

By de Rham decomposition, we now focus more on the building blocks: Riemannian
manifolds with irreducible holonomy. The theory of Lie groups allows us to understand
a block if it is symmetric.
Definition 1. A Riemannian manifold M is called symmetric if for every x ∈ M ,
there exists an isometry sx of M such that x is an isolated fixed point and s2

x = Id.
Let x ∈ M and v ∈ TxM , we note by expx(v) the point of distance |v| in the

geodesic starting in x with velocity v/|v|. We remark that any isometry sx with
s2
x = Id and x as isolated fixed point satisfies

sx(expx(v)) = expx(−v). (1)

In fact the eigenvalues of Txsx have to be 1 or −1, but as x is an isolated fixed point
one has Txsx = −Id. Then sx as an isometry sends the geodesic starting at x with
velocity v to one starting at sx(x) = x with velocity (sx)∗v = −v and we have (1).

Equation (1) tells us that sx is a reflection of center x on every geodesic passing
by x. We can compose two reflections sx, sy to form a translation on the geodesic
connecting x and y. This shows that a symmetric space is complete and the group of
isometries of the form sx ◦ sy acts transitively on M .
Theorem 5 (Symmetric space). Let M be a symmetric Riemannian manifold then

1. M is complete.

2. Fix x0 ∈M , let G be the group generated by the isometries of form sx ◦sy, x, y ∈
M and H is the subgroup containing elements of G that fix x0. Then G is a Lie
subgroup of the group Isom(M) of isometries of M , G is connected by arc, H is
a closed Lie subgroup of G and M is isometric to G/H. Moreover the holonomy
group of M is H.

Remark 3. In general, for a Lie group G and a closed Lie subgroup H, if G has a
metric left-invariant by G and right-invariant by H (i.e. the metric on g is invariant
by action of H by adjoint) then

g = h⊕⊥ m, [h,m] ⊂ m

But if G/H is symmetric then one has the following extra information

[m,m] ⊂ h

It turns out that this condition is quite strong and allowed E. Cartan to classify all
such pairs (g, h).
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2. Symmetric spaces and Lie groups

2.2 Locally symmetric space

The previous results can be extended to locally symmetric spaces.

Proposition-Definition 2. Let M is a Riemannian manifold, the followings are
equivalent

1. For every x ∈M , there exists a neighborhood U of x and an isometry sx : U −→
U such that s2

x = Id and x is the unique fixed point of sx.

2. The curvature tensor R satisfies

∇R = 0
If they are satisfied, M is called locally symmetric.

Theorem 6 (Locally symmetric space). Let M be a locally symmetric Riemannian
manifold, then there exists a unique symmetric simply connected Riemannian manifold
N such that M and N are locally isometric, i.e. for every x ∈ M and y ∈ N , there
exists neighborhoods U of x and V of y that are isometric.

As a result, the reduced holonomy of M is the same as the holonomy of N .

2.3 Annex: Group of isometries as Lie group

We explain in this annex some subtle details: how can a group of isometries be a
manifold. We state, with [MZ55] as reference, the following general result:

Theorem 7 (faithful + locally compact =⇒ Lie). Let G be a group acting faithfully
on a connected manifold M such that each action is C1 and G is locally compact. Then
G is a Lie group and the map G×M −→M is C1.

Note that we equip a group of isometries with the compact-open topology, asM
is locally compact and therefore second-countable (i.e. the topology admits a count-
able base), we see that a group of isometries is also second-countable (or completely
separable). It suffices to prove the local compactness for the group of (all) isometries
as this property is inherited by its closed subgroup. The details can be found in the
book [KN63] of Kobayashi-Nomizu (Volume I, Theorem 4.7).

Theorem 8. Let M be a connected, locally-compact metric space and G be the group
of isometries of M , then

1. G is locally compact.

2. Ga the subset of isometries fixing a point a ∈M is compact.

3. If, in addition, M is compact then G is also compact.
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3. Berger classification and remarks on parallel structure

3
BERGER CLASSIFICATION AND

REMARKS ON PARALLEL STRUCTURE

3.1 Our story so far

De Rham decomposition theorem allows us to split a Riemannian manifold under
certain conditions (complete and connected) as Riemannian product of complete con-
nected manifolds with irreducible holonomy representation. If an irreducible building
block is locally symmetric, the theory of Lie groups developed by E. Cartan gave a
complete list of holonomy of these spaces. We now shift our focus on non-symmetric
irreducible manifolds.

3.2 Berger classification of non-symmetric irre-
ducible manifolds

Theorem 9 (Berger classification). For a non-symmetric irreducible manifold, the
holonomy representation has to be one of the following

1. SO(n),

2. U(m) ⊂ SO(2m),

3. SU(m) ⊂ SO(2m),

4. Sp(r) ⊂ SO(4r),

5. SO(r)Sp(1) ⊂ SO(4r),

6. G2 ⊂ SO(7),

7. Spin(7) ⊂ SO(8).

where n = 2m = 4r is the (real) dimension. The group Sp(r) will be described later in
section 3.5.

Here are some notations, note always that

Sp(m) ⊂ SU(2m) ⊂ U(2m) ⊂ SO(4m)

1. If Hol(g) ⊂ U(m) ⊂ SO(2m), g is called a Kähler metric.

2. If Hol(g) ⊂ SU(m) ⊂ SO(2m), g is called a Calabi-Yau metric. We will see that
a Calabi-Yau metric is a Kähler metric that is also Ricci-flat.
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3. Berger classification and remarks on parallel structure

3. If Hol(g) ⊂ Sp(m) ⊂ SO(4m) then g is called a hyperkähler metric.

4. G2 and Spin(7) are called exceptional holonomies

To sum up: hyperkähler −→ Calabi-Yau −→ Kähler.

But what do we mean by U(n) ⊂ SO(2n)? To embed U(n) in SO(2n) one needs
to identify C and R2n, this can be done using an almost complex structure J of R2n.
We will prove that when we change the almost complex structure, the embedded image
of U(n) in SO(2n) always remains in the same conjugacy class, which corresponds to
the fact that while holonomy representation is well-defined, the holonomy group in
SO(2n) is only defined up to its conjugacy class.

3.3 Almost complex structure

Definition 3. A(n) (almost) complex structure J on a vector space V is an automor-
phism J : V −→ V with J2 = −IdV . If V has a scalar product g, we suppose in
addition that g ◦ J = J .

A(n) (almost) complex structure J on manifoldM is a vector bundle automorphism
J : TM −→ TM that satisfies J2

x = −IdTxM for every x ∈M . If M is a Riemannian
manifold, we assume in addition that g ◦ J = g.

Let us first have a look at a complex structure J on a fiber (vector space) V . Here
are some direct consequences:

Complexification. g and J extend in an unique way over VC, the complexification
of V , to a Hermitian product gC and a C -linear automorphism (also noted by J) and
one still has gC ◦ J = gC.

Eigenspaces. The complexified space VC is decomposed to VC = V 1,0⊕⊥ V 0,1 where
V 1,0 and V 0,1 are eigenspaces (complex vector space) corresponding to eigenvalues i
and−i of J on VC. The orthogonality is by gC. The complex conjugate∑ zixi 7→

∑
z̄ixi

where zi ∈ C and xi ∈ V maps V 1,0 to V 0,1. Their dimensions are therefore the same.

Hermitian form. The fundamental form ω of (V, J) is defined by

ω(a, b) = g(Ja, b) = −g(a, Jb) on V

which is an antisymmetric real 2-form with ω ◦ J = ω. V equipped with the following
Hermitian form

h(a, b) = g(a, b)− iω(a, b) on V

in the sense that h(., .) is R -bilinear with h(Ja, b) = ih(a, b) and h(a, Jb) = −ih(a, b).
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3. Berger classification and remarks on parallel structure

Identification. One usually identifies (V, J) and (V 1,0, i) as vector spaces equipped
with complex structure, using the following map:

ιJ : x 7→ 1
2(x− iJ(x))

which is C -linear in the sense of complex structure: ιJ(Jx) = iιJ(x). Note that
(V,−J) is also isomorphic to (V 0,1, i) by the conjugate of ιJ : x 7→ 1

2(x+ iJ(x)).
Now note that on we have on (V, J) an hermitian product h(., .) and on (V 1,0, i)

the restricted Hermitian product gC of VC. The following lemma gives their relation
(the proof is straightforward computation, see Manuscript).

Lemma 10. The identification (V, J) = (V 1,0, i) by ιJ gives
1
2h = gC|V 1,0

We can now embed U(n) to SO(2n), in other words U(V 1,0) to SO(V ) by the map

φ 7→ φ̃ as follow:
V V

V 1,0 V 1,0

ιJ

φ̃

ιJ

φ

Note that the correspondance φ ↔ φ̃ is one-to-one between {φ : V 1,0 −→
V 1,0 R-linear} and {φ̃ : V −→ V R-linear}. Then

1. φ is C -linear if and only if φ̃ ◦ J = J ◦ φ̃.

2. φ preserves gC if and only if φ̃ preserves h. Taking the real and imaginary part,
the latter is equivalent to the fact that φ̃ preserves g and ω.

3. Every C -linear φ̃ preserves orientation of V 1,0 as R2n (note that the fact that φ̃
preserves orientation or not is independent of how one identifies V 1,0 and R2n).

Hence for every J , φ 7→ φ̃ gives a embedding of U(V 1,0) to SO(V ). An orthonormal
base of V 1,0 and that of V give a embedding U(n) ⊂ SO(2n).

Remark 4. The image of U(n) in SO(2n) may depends on J and the orthonormal
base of V , but its conjugacy class in SO(2n) is uniquely defined. This is because every
complex structure J is, up to a orthonormal conjugation,

J0 =
(

0 In
−In 0

)
.

3.4 Complexified dual and forms, prelude to Käh-
ler geometry

We state first some linear algebra facts, whose proofs are tedious and can be consulted
in the Manuscript.
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3. Berger classification and remarks on parallel structure

Lemma 11 (Linear algebra facts). 1. Let V = W1 ⊕ W2 be R -module then the
exterior algebra of V splits into

n∧
V =

⊕
p+q=n

p∧
W1 ⊗

q∧
W2

Note that the tensor product here is formal, and not related to the tensor product
defining the exterior algebra.

2. If V has a complex structure J then J gives a complex structure on V ∗ =
HomR(V,R), naturally by φ 7→ φ ◦ J .

One has
(V ∗)C = HomR(V,C) ≡ HomC(VC,C)

and
(V ∗)1,0 = HomC((V, J),C), (V ∗)0,1 = HomC((V,−J),C)

where HomC(V,C) denotes the set of R -linear morphisms that preserves complex
structures (C is implicitly with the complex structure z 7→ iz)

Therefore (V ∗)C = (V ∗)1,0 ⊕ (V ∗)0,1 is rewriten as

HomR(V,C) = HomC((V, J),C)⊕HomC((V,−J),C)

Using the first point of Lemma 11, one has
n∧

(V ∗)C =
⊕

p+q=n

p,q∧
(V ∗)C

where ∧p,q T ∗CM denotes the C -vector space of forms that are p times C -linear and q
times C -antilinear.

Note one can easily find in V an orthonormal basis ∂xi
, ∂yi

with J(∂xi
) = ∂yi

. We
clarify here the definition and implicit identifications of basic objects such as dzi and
dz̄i.
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3. Berger classification and remarks on parallel structure

(V, J) C V C

(V 1,0, i) VC

ιJ

dzi dzi

C-lin
dzi dzi

Figure 1: Two natural ways to define dzi on V 1,0. They gives the same form.

(V,−J) C V C

(V 0,1, i) VC

ιJ

dz̄i dz̄i

C-lin
dz̄i dz̄i

Figure 2: Two natural ways to define dz̄i on V 0,1. They gives the same form.

Object Where it belongs/ properties Extension/ properties

∂zi
= ιJ(∂xi

) V 1,0, dzi(∂zj
) = δi,j,

= 1
2(∂xi

− i∂yi
) form a C -base dzi(∂z̄j

) = 0

∂z̄i
= ι−J(∂xi

) V 0,1, dz̄i(∂zj
) = 0,

= 1
2(∂xi

+ i∂yi
) form a C -base dz̄i(∂z̄j

) = δi,j

dzi = dxi + idyi HomC((V, J),C) ≡ HomC(V 1,0,C), HomC(VC,C),
C -linear null on V 0,1

dz̄i = dxi − idyi HomC((V,−J),C) ≡ HomC(V 0,1,C), HomC(VC,C),
C -antilinear null on V 1,0

Remark 5. One can note that there are two natural ways to extend dzi to V 1,0

1. by first make a C -linear extension on VC, then make a restriction on V 1,0

2. using the identification (V, J) ≡ (V 1,0, i)

but these two coincide, as there exists a unique form C -linear dzi that satisfies
dzi(∂zj

) = δi,j, dzi(∂z̄j
) = 0. Same story with dz̄i. See Figure 3.4 and Figure 3.4.

Proposition-Definition 4. The following properties are equivalent and X is called
a Kähler manifold if one of them is satisfied.

1. X is a complex manifold, equipped with a Hermitian structure h(., .) compatible
with the complex structure J , and a fundamental form ω with dω = 0.
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3. Berger classification and remarks on parallel structure

2. X is a Riemannian manifold with a parallel complex structure.

3. X is a complex manifold, equipped with a Hermitian structure such that the Chern
connection on T 1,0X is, up to an identification by ιJ , the Levi-Civita connection.

4. X is a complex manifold, equipped with an Hermitian structure such that the
Chern connection on T 1,0X is torsionless.

We call a complex manifold X of Kähler type if there exists a Hermitian structure
under which X is Kähler.

The proof is straightforward. The only part that is not trivial is that a parallel
almost complex structures has to come from a complex atlas, i.e. atlas of X such that
each transition map preserves the complex structure. Such almost complex structures
are called integrable.

To prove this, one uses the following (1,2)-tensor called Nijenhuis tensor of a (1,1)-
tensor A, defined by:

NA(X, Y ) = −A2[X, Y ] + A[AX, Y ] + A[X,AY ]− [AX,AY ]

and the following theorem.

Theorem 12 (Newlander–Nirenberg). An almost complex structure on M with van-
ishing NJ is integrable.

The proof that a parallel almost complex structure J has NJ = 0 is computational
in nature and can be found in the Manuscript.

3.5 Symplectic holonomy

One can look at the symplectic group Sp(r) from the following two points of view:

1. Sp(r) is the quaternionic unitary group, i.e. the subgroup of AutH(Hr) of el-
ements preserving a quaternion Hermitian form q, where H is the algebra of
quaternions.

2. Sp(r) = U(2r) ∩ Sp(2r,C).

The second point of view explains how Sp(r) is embedded in SO(4r). Let us
consider Sp(r) from the first point. In our context, let V be a tangent space at one
point of the manifold M , that is a 4r real dimensional vector space, one can regard
Sp(r) as the group of automorphisms of V preserving the Riemannian metric g|V and
the complex structures I, J (hence K = IJ) satisfying IJ = −IJ . Hence we have the
following remark:

Remark 6. The following properties are equivalent for a Riemannian manifold M :

1. Hol(M) ⊂ Sp(r) ⊂ SO(2r).
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3. Berger classification and remarks on parallel structure

2. There exists onM three parallel complex structures I, J,K that satisfy K = IJ =
−JI.

3. There exists on M a parallel complex structure I and a holomorphic (w.r.t I),
parallel, 2-form ϕ that is non-degenerate at a point (hence at every point).

We note that the holomorphic 2-form in the third point is given by

ϕ = ωJ +
√
−1ωK

where ωI and ωK are fundamental forms with respect to complex structures I and K,
and M is regarded under the complex structure I.

The implication (2) =⇒ (3) is actually [Huy05, Exercise 1.2.5].
For the implication (3) =⇒ (2), note that the real and imaginary part of ϕ are

parallel, they correspond to complex structures J and K onM . Since ϕ is a (2,0)-form
w.r.t I, one has ϕ(Iu, v) = iϕ(u, v), taking the real part and using the fact that g is
non-degenerate, one has K = IJ = −JI.
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4. Calabi-Yau theorem

4
CALABI-YAU THEOREM

4.1 Calabi conjecture

In complex geometry, one usually defines the Ricci curvature to be the real (1,1)-
form ρ with ρ(u, v) = Ric(Ju, v) = tr(w 7→ R(w, v).Ju), where R is the Riemannian
curvature tensor, as ρ has the advantage of being an antisymmetric form. We will call
ρ the Ricci form.

We start with the following fact, which is [Huy05, Exercise 4.A.3].
Proposition 12.1 (Ricci curvature and first Chern class). Let (X, g) be a compact
Kähler manifold. Then iρ(X, g) is the curvature of the Chern connection on the canon-
ical bundle KX . In other words, ρ(X, g) ∈ −2πc1(KX) where c1(KX) is the first Chern
class of KX .

Remark 7. For our convenience when talking about positivity, we would rather use
the anticanonical bundle. Then K−1

X is positive (resp. semi-positive) if and only if Ric
is positive definite (resp. positive semi-definite) as a symmetric form.

Definition 5. The quadruple (h, g, ω, J) is said to be compatible if g ◦ J = g and
ω(a, b) = g(Ja, b) and h = g − iω.

Remark 8. 1. When J is fixed, one of h, g, ω that is invariant by J determines the
two others.

2. For a compatible quadruple, the condition ∇J = 0 is equivalent to dω = 0. The
fundamental form ω that satisfies dω = 0 is called a Kähler form.

The Calabi conjecture asked whether for each form R ∈ c1(KX) one can find a
metric g′ whose new fundamental form ω′ is in the same Kähler class and Ric(X, g′) =
R. We prefer to work with the fundamental form instead of the metric g as the former
is antisymmetric and its derivative is hence easy to define.

4.2 Reduction to local charts, Calabi-Yau theo-
rem

h, g, ω in local coordinates. We note by hij̄ = h(∂xi
, ∂xj

) = 2gC(∂zi
, ∂zj

). By
straightforward calculation one has

ω = −1
2Im hij̄(dxi ∧ dxj + dyi ∧ dyj) + Re hij̄dxi ∧ dyj

= i

2hij̄dz
i ∧ dz̄j
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4. Calabi-Yau theorem

and the condition dω = 0 is equivalent to

∂hij̄
∂zk

=
∂hkj̄
∂zi

.

We also note by hij̄ the inverse transposed of hij̄, i.e. hij̄hkj̄ = δkj .

Definition 6. Let X be an almost complex manifold (manifold with an almost com-
plex structure). Then d : ∧n T ∗X −→ ∧n+1 T ∗X sends ∧p,q T ∗M to ∧p+1,q T ∗M ⊕∧p,q+1 T ∗M . We denote by ∂ and ∂̄ the component of d in ∧p+1,q T ∗M and ∧p,q+1 T ∗M
respectively.

It would be convenient to define dc = i(∂̄ − ∂) then obviously ddc = 2i∂∂̄.

The Ricci curvature. The Ricci curvature form is given in local coordinates by

Ricω = −1
2dd

c log det(hij̄).

ddc lemma . We then can state the ddc lemma.

Lemma 13. Let α be a real, (1,1)-form on a compact Kähler manifold M . Then α is
d -exact if and only if there exists η ∈ C∞(M) globally defined such that α = ddcη.

Yau’s theorem. The ddc lemma tells us that every form R ∈ c1(KX) is of form
Ricω + ddcη. If one varies the Hermitian product hij̄ to hij̄ + φij̄ then the new Ricci
curvature is ddc log det(hij̄ + φij̄). The Calabi conjecture can be restated as the exis-
tence of φ such that hij̄ + φij̄ is definite positive and

ddc
(
log det(hij̄ + φij̄)− log det(hij̄)− η

)
= 0 (2)

The functions f that satisfies ddcf = 0 are called pluriharmonic. They also satisfy
the maximum principle. By compactness of X, these functions on X are exactly
constant functions. Therefore (2) is equivalent to

det(hij̄ + φij̄) = ec+η det(hij̄)

or by ddc lemma:
(ω + ddcφ)n = ec+ηωn

where ωn denotes the repeated wedge product. Note that (ω + ddcφ)n − ωn is exact,
one has

∫
M(ω+ ddcφ)n = V , the conjecture of Calabi is therefore a consequence of the

following theorem.

Theorem 14 (Yau). Given a function f ∈ C∞(M), f > 0 such that
∫
M fωn = V .

There exists, uniquely up to constant, φ ∈ C∞(M) such that ω + ddcφ > 0 and

(ω + ddcφ)n = fωn. (3)
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4. Calabi-Yau theorem

4.3 A sketch of proof

The uniqueness is straightforward. In fact if φ and ψ both satisfy ω + ddcφ > 0,
ω + ddcψ > 0 and (ω + ddcφ)n = (ω + ddcψ)n then D(φ− ψ) = 0 as

0 =
∫
M

(φ− ψ)((ω + ddcφ)n − (ω + ddcψ)n) =
∫
M
d(φ− ψ) ∧ dc(φ− ψ) ∧ T

where
T =

n−1∑
j=0

(ω + ddcφ)j ∧ (ω + ddcψ)n−1−j

is a closed positive (n− 1, n− 1)-form.
We will discuss the existence of φ under the constraint

∫
M φωn = 0. The idea of

the proof is to show that the set S of t ∈ [0, 1] such that there exists φt ∈ Ck+2,α(M)
with

∫
M φtω

n = 0 that satisfies

(ω + ddcφt)n = (tf + 1− t)ωn (4)

is both open and close in [0, 1], therefore is the entire interval as 0 ∈ S.
To see that S is open, one only has to prove that the function N defined by

φ 7→ N (φ) =
det(hij̄ + φij̄)

det(hij̄)

or in other words (ω + ddcφ)n = N (φ)ωn, is a local diffeomorphism. The differential
of N is given by

DN (φ).η = N∆η
with η varies in {η ∈ Ck,α(M) :

∫
M ηωn = 0}, and ∆ is the Laplace-Beltrami operator

which is known (see [War83, Chapter 6] or [GT83, Chapter 8] for example) to be
bijective between{

η ∈ Ck+2,α(M) :
∫
M
η = 0

}
−→

{
f ∈ Ck,α(M) :

∫
M
f = 0

}
Therefore N is a local diffeomorphism and S is open.

The proof that S is closed is more technical and is accomplished in 3 steps:

1. Using Arzela-Ascoli theorem, it suffices to show that {φt : t ∈ S} is bounded
in Ck+2,α. In fact if φtn solves (4) for t = tn converging to τ ∈ [0, 1] then up to
a subsequence, one can suppose that {φtn} converges in Ck+1,α to φτ ∈ Ck+1,α

that solves (4) for t = τ . The fact that φτ ∈ Ck+2,α is due the following Schauder
estimate.

2. Using Schauder theory, one can prove the following estimate for any φ satisfying
(3):

φ ∈ C2,α, f ∈ Ck,α =⇒ φ ∈ Ck+2,α, and ‖φ‖k+2,α ≤ C

where C depends only on M and the upper bounds for ‖φ‖2,α, ‖f‖k,α.
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4. Calabi-Yau theorem

3. It remains then to prove the following a priori estimate:
There exists α ∈ (0, 1) and C(M, ‖f‖1,1, 1/ infM f) > 0 such that every φ ∈
C4(M) satisfying (ω+ ddcφ)n = fωn, ω+ ddcφ > 0 and

∫
M φωn = 0 (we will call

such φ admissible) has
‖φ‖2,α ≤ C.

To achieve the a priori estimate, one firstly bounds φ in C0, then bound ‖∆φ‖ and
finally establishs the C2,α estimate. We will give here some details of the first step.
For more detail, see [Bł12].

Proof of the C0-estimate. Since φ is defined up to an additive constant, what we mean
by the C0 -estimate for φ is in fact the estimate of

oscMφ := max
M

φ−min
M

φ

by a constant C that depends only on M and f . Without loss of generality, one
assumes that

∫
M ωn = 1 and maxM φ = −1. Therefore ‖φ‖Lp ≤ ‖φ‖Lq for p ≤ q <∞.

One has for every p ≥ 1:
∫
M

(−φ)p(f − 1)ωn =
∫
M

(−φ)pddcφ ∧
n−1∑
j=0

(ω + ddcφ)j ∧ ωn−1−j

 (5)

= p
∫
M

(−φ)p−1dφ ∧ dcφ ∧

ωn−1 +
n−1∑
j=1

(ω + ddcφ)j ∧ ωn−1−j


(6)

≥ p
∫
M

(−φ)p−1dφ ∧ dcφ ∧ ωn−1 (7)

= 4p
(p+ 1)2

∫
M
d(−φ)(p+1)/2 ∧ dc(−φ)(p+1)/2 ∧ ωn−1 (8)

= cnp

(p+ 1)2‖D(−φ)(p+1)/2‖2
L2 (9)

where we used the fact that ω + ddcφ > 0 in the inequality, and cn is a constant
depending only on n.

Now we use the following Sobolev inequality on M (i.e. use Sobolev inequality in
each chart as a domain of Rm then add up the results):

‖v‖Lmq/(m−q) ≤ C(M, q)(‖v‖Lq + ‖Dv‖Lq), ∀v ∈ W 1,q(M), q < m

with v = φ, m = 2n the real dimension of M and q = 2, then use (9) to bound the
Dφ term:

‖(−φ)(p+1)/2‖L2n/(n−1) ≤ CM

[
‖(−φ)(p+1)/2‖L2 + p+ 1

√
p

(∫
M

(−φ)p(f − 1)ωn
)1/2

]

Replace p+ 1 by p and use the fact that |φ| ≥ 1, one has

‖φ‖Lnp/(n−1) ≤ (Cp)1/p‖φ‖Lp , ∀p ≥ 2
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4. Calabi-Yau theorem

where C depends only on M and ‖f‖L∞ .
Repeatedly apply this inequality (this technique is called Moser’s iteration) one

has ‖φ‖Lpk+1 ≤ (Cpk)1/pk‖φ‖Lpk where the sequence pk is defined by p0 = 2 and
pk+1 = n

n−1pk−1 = 2( n
n−1)k and

‖φ‖L∞ = lim
k→∞
‖φ‖Lpk ≤ ‖φ‖L2

∞∏
j=0

(Cpj)1/pj

with ∏∞j=0(Cpj)1/pj = (n/(n− 1))n(n−1)/2(2C)n/2
Moreover, one can bound ‖φ‖L2 with ‖φ‖L1 as follow. Using (9) for p = 1, one has

(‖f‖L∞ + 1)‖φ‖L1 ≥
∫
M
|φ|(f − 1)ωn ≥ cn

4 ‖Dφ‖
2
L2

Using Poincaré inequality, one has ‖Dφ‖2
L2 ≥ C ′(M) (‖φ‖2

L2 − (
∫
M φωn)2). Therefore

‖φ‖L2 ≤ C(M, ‖f‖L∞)(‖φ‖L1 + 1)

It remains to prove that ‖φ‖L2 is bounded, which is the following lemma.
Lemma 15 (L1-boundedness). For any admissible φ with maxM φ = −1 one has
‖φ‖L1 ≤ C(M)
Proof. Let ψ be the local potential of the Kähler form ω, i.e. a function defined on
each chart (not necessarily agrees on zones where charts are glued together) such that
ω = ddcψ =

√
−1
2 hij̄dzi ∧ dz̄j where hij̄ can be intepreted as ∂2

∂zi∂z̄j
ψ. We also suppose

that the function ψ is negative on every chart. The fact that ω+ddcφ > 0 is rewritten
as (hij̄ + φij̄) > 0 in local coordinates.

Note u = ψ + φ the potential of ω + ddcφ locally defined on each chart, then u is
negative and plurisubharmonic (psh). For every x ∈ B(y,R) one has

u(x) ≤ 1
vol(B(x, 2R)

∫
B(x,2R)

u ≤ 1
vol(B(y, 2R))

∫
B(y,R)

u

where the first inequality is due to plurisubharmonicity and the second is due to u ≤ 0.
Therefore

‖u‖L1(B(y,R)) ≤ vol(B(y, 2R)) inf
B(y,R)

|u|,

hence
‖φ‖L1(B(y,R)) ≤ ‖u‖L1(B(y,R)) ≤ vol(B(y, 2R))( inf

B(y,R)
|φ|+ max

M
|g|).

To see that ‖φ‖L1 is bounded, we apply the following Lemma 16 to the covering of M
by finitely many balls B(yi, Ri), ci = vol(B(yi, 2Ri)), di = ci maxM |g| and r = 1.

Lemma 16 (Combinatoric). LetM be a connected compact manifold covered by finitely
many local charts {Vi}li=1 and r, ci, di > 0. Then for any continuous function φ globally
defined on M such that

‖φ‖L1(Vi) ≤ ci inf
Vi

|φ|+ di, min
M
|φ| ≤ r,

one has ‖φ‖L1 := ∑
i ‖φ‖L1(Vi) ≤ C({Vi}, {ci}, {di}, r)
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4. Calabi-Yau theorem

Proof. Let p be a point in M where |φ| attains its minimum. Since M is connected,
for every Vi, there exists a sequence Vik , 0 ≤ k ≤ l such that

i0 = i, Vik ∩ Vik+1 6= ∅, p ∈ Vil .

One has

‖φ‖L1(Vik
) ≤ cik inf

Vik

|φ|+ dik ≤ cik inf
Vik
∩Vik+1

|φ|+ dik

≤ cik
1

vol(Vik ∩ Vik+1)‖φ‖L
1(Vik+1 ) + dik .

Repeatedly apply this inequality for k = 0, . . . , l − 1, one has

‖φ‖L1(Vi) ≤ A(i, {Vj}, {cj}, {dj})‖φ‖L1(Vil
) +B(i, {Vj}, {cj}, {dj})

≤ A(i, {Vj}, {cj}, {dj})(cilr + dil) +B(i, {Vj}, {cj}, {dj}).

Take the sum for all i = 0, . . . , l and the result follows.

4.4 Calabi-Yau manifold

Recall that we defined a Calabi-Yau manifold to be a compact Riemannian manifold
of dimension 2n with holonomy contained in SU(n). We also remark, using paral-
lel transport, the existence of a compatible complex structure (U(n) suffices) and a
holomorphic form non-vanishing at every point. We present here some equivalent
definitions of compact Calabi-Yau manifolds.

Theorem 17. Let X be a compact manifold of Kähler type and complex dimension n
then:

1. The followings are equivalent

(a) There exists a Kähler metric such that the global holonomy is in SU(n).
(b) There exists a holomorphic (n, 0) form that vanishes nowhere.
(c) The canonical bundle KX is trivial.
(d) The structure group of TX can be reduced to SU(n).

2. The following are equivalent. If X is simply-connected, they are equivalent with
the 4 statements above.

(a) There exists a Kähler metric such that the local holonomy is in SU(n).
(b) The canonical bundle KX is flat.
(c) There exists a Kähler metric such that the Ricci curvature vanishes.
(d) The first Chern class vanishes.

The proof is straightforward with the only non-trivial part is when one needs
Calabi-Yau theorem to construct Ricci-flat metric.
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5
CHEEGER-GROMOLL SPLITTING

We will prove the following result by Cheeger and Gromoll by a slightly modified
approach of Besse in [Bes07, Theorem 6.79, page 172].

Theorem 18 (Cheeger-Gromoll). Let M be a complete, connected Riemannian man-
ifold with non-negative Ricci curvature. Suppose that M contains a line then M is
isometric to M ′ × R with M ′ a complete, connected Riemannian manifold with non-
negative Ricci curvature.

Note that the notion of geodesic ray or geodesic line used here is rather strict: A
geodesic line γ is a geodesic parameterized by R such that the distance between two
point is exactly the distance on the geodesic, for example, geodesic line, if it passes by
p ∈M with velocity v of norm 1, satisfies

d(expp(tv), expp(−sv)) = s+ t, ∀s, t > 0

5.1 Busemann function

Let γ be a geodesic ray. We construct the Busemann function b associated to the ray
as

b(x) = lim
t→+∞

(t− d(x, γ(t)))

where the limit exists because the sequence ft : x 7→ t − d(x, γ(t)) is non-decreasing
and bounded above by d(x, γ(0)). The convergence is also uniform on every compact
of M .

In Euclidean space for example, the Busemann function is the orthogonal projection
on γ. We will see that in a Riemannian manifold with non negative curvature, the
Busemann function will serve as a projection.

Now with a fixed x0 ∈M , the tangent vectors at x0 of the geodesics connecting x0
and γ(t) is in the unit sphere of TxM , which is compact. Let X be a limit point of
these tangents vectors, we defined

bX,t(x) = b(x0) + t− d(x, expx0(tX))

where expx0(tX) is the geodesic starting at x0 with velocity X.

Remark 9. 1. From the construction of X, one has b(x0) + t = b(expx0(tX)),
therefore bX,t ≤ b with equality in x0. We say that b is supported by bX,t at x0.
In general a function f is supported by g at x0 if f(x0) = g(x0) and f ≥ g in a
neighborhood of x0.
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5. Cheeger-Gromoll splitting

2. bX,t is smooth and a computation in local coordinate gives ∆bX,t(x0) ≤ dimM−1
t

,
where ∆ denotes the Laplacian with repsect to the metric on M .

3. ‖∇bX,t‖ = 1.

The estimation given on the second point of Remark 9 is established using Jacobi
fields:

Lemma 19. Let M be a Riemannian manifold of dimension n with non-negative Ricci
curvature. The function f(x) = d(x, x0) satisfies at any point x out of the cut-locus of
x0:

∆f(x) ≥ −n− 1
f(x)

where ∆ denotes the Laplacian with repsect to the metric on M .

Proof. Let N(t), 0 ≤ t ≤ l be the velocity of the geodesic γ from x0 to x, and
E1, . . . , En−1, N be a parallel frame along γ. Let Ji be the unique Jacobi fields along
γ with Ji(l) = Ei(l) and Ji(0) = 0 (existence and uniqueness of Ji is due to the fact
that x is not in the cut-locus).

Then basic manipulation of Jacobi fields gives (without the fact that curvature is
non-negative):

−∆f(x) =
∫ l

0
dt

n−1∑
i=1

(< ∇NJi,∇NJi > − < R(N, Ji)Ji, N >) =
n−1∑
i=1

Iγ(Ji, Ji)

where Iγ is the index form of γ. Note that the Jacobi fields Ji coincide with the fields
t
l
E(t) at 0 and l, therefore by the fundamental inequality of index form (see [Sak96,
Lemma 2.10 page 95] for details about Jacobi fields and Fundamental inequality of
index form):

Iγ(Ji, Ji) ≤ Iγ(
t

l
Ei,

t

l
Ei)

hence
−∆f(x) ≤

∫ l

0

n−1∑
i=1

< ∇N
t

l
Ei,∇N

t

l
Ei > − < R(N, t

l
Ei)

t

l
Ei, N >

The curvature term being t2

l2
Ric(N,N) non-negative, one has

−∆f(x) ≤
∫ l

0
dt

n−1∑
i=1

< ∇N
t

l
Ei,∇N

t

l
Ei >= n− 1

l
.

We also note that for Theorem 18 it suffices to show that the Busemann function b
is harmonic. Let us give some details. In fact, from the smoothness one has ∇b(x0) =
∇bX,t(x0), which means ‖∇b‖ = 1 at every point in M . For each point y ∈ M , there
exists a unique x with b(x) = 0 and time t for which the flow of ∇b starting at x arrives
at y at time t. M is therefore homeomorphic to M̄ ×R by the map F : y 7→ (x, t). In
order that F is an isometry, it suffices to prove that the gradient field ∇b is parallel.
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5. Cheeger-Gromoll splitting

In fact, M̄ being equiped with the restriction of the metric on M , the fact that F is
isometric is equivalent to the the fact that the flow Φt of ∇b is isometric for every time
t, which means d

dt
< Φt

∗u,Φt
∗u > vanishes at t = 0. But

d

dt
< Φt

∗u,Φt
∗u > |t=0 = 2 < ∇∂tΦt

∗u, u > |t=0 = 2 < ∇u∇b, u >

where in the second equality we used Schwarz lemma for commuting derivatives of
Φ(t, x) = Φt(x). The vanishing of < ∇u∇b(x), u > for every vector u is, by bilinearity,
equivalent to that of ∇u∇b for every u, meaning that ∇b is parallel.

The fact that ∇b is parallel is due to a simple computation:

Ric(N,N) = N(∆b)− ‖∇N‖2

where ‖∇N‖2 = ∑n−1
i=1

∑n−1
j=1 < ∇Ei

N,Ej >
2. We see that N = ∇b is parallel if ∆b = 0,

as the Ricci curvature is non-negative.

Remark 10. 1. One can show (see [Bes07, Lemma 6.86, page 176]) that every
gradient field ∇b of norm 1 at every point is actually harmonic.

2. Using de Rham decomposition, one has directly the splitting of M if it is simply-
connected since N is parallel and M is complete.

5.2 Harmonicity

The Busemann function associated to a geodesic ray is subharmonic, it is a consequence
of the following lemma.

Lemma 20. On a connected Riemannian manifold, if a continuous function f is
supported at any point x by a family of C∞ functions fx,ε depending on x and ε → 0
with ∆fx,ε(x) ≤ ε, then f can not attains local strict maximum.

Proof. Suppose that f attains its strict maximum at a point x0 and let B be a small
geodesic ball containing x0. Suppose that we have a function h on B with ∆h < 0
on B and |h| small enough such that f + h attains maximum at x in the interior of
B. Then fx,ε + h also attains maximum at x, which means ∆fx,ε + ∆h ≥ 0 at x. Let
ε→ 0, we have a contradiction.

For the construction of the function h, one suppose that B is small enough such
that f |∂B ≤ maxB f =: f(x0) and equality is not attained at all points of ∂B. Then
choose

h = η(eαφ − 1)
with φ(x) = −1 if x ∈ ∂B and f(x) = f(x0), φ(x0) = 0, ∇φ 6= 0 and a constant α.
We can find α large enough such that

∆h = η(−α2‖∇φ‖+ α∆φ)eαφ

is negative.
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5. Cheeger-Gromoll splitting

Now Let us prove the subharmonicity of the Busemann function b. Given a har-
monic function h that coincides with b in the boundary ∂B of a geodesic ball B, then
b− h is supported by bX(x0),t − h at any point x0 ∈ B, where X(x0) is a unit tangent
vector at x0. By Lemma 19, one has ∆(bX(x0),t − h)(x0) = n−1

t
→ 0 as t tends to

+∞. By Lemma 20 b − h can not attain strict maximum in the interior of B, hence
b− h ≤ (b− h)|∂B = 0 in B. We have just proved the following lemma:

Lemma 21. The Busemann function of a geodesic ray in a Riemannian manifold M
with non-negative Ricci curvature is subharmonic.

Now let b+ be the function previously constructed for the ray γ|[0,+∞[ and b− the
Busemann function for the ray γ̃|[0,+∞[ where γ̃(t) = γ(−t). Note that b++b− ≤ 0 with
equality on the line γ, but the sum is subharmonic therefore by maximum principle
b+ +−b− = 0 and b is harmonic therefore smooth. The splitting theorem of Cheeger-
Gromoll follows.

5.3 Application

A consequence of Theorem 18 is the following result from [CG71] (Theorem 2)

Theorem 22. Let M be a compact Riemannian manifold with non-negative Ricci
curvature, then the universal covering space of M is of form M = Rn × M̄ where M̄
does not contain any lines. Then M̄ is compact.

Proof. It suffices to prove that if M̄ is not compact, then it contains a line. In fact, it
is easy to see that such M̄ must contains a (strict) geodesic ray. In fact it is obvious
that for a fixed p ∈M the function

F : v 7→ inf{t > 0 : d(p, expp(tv)) < t}

defined on the unit ball Up of TpM̄ is upper semi-continuous. Therefore if F (v) < ∞
for all unit tangent vector v at p then F is bounded above in Up by a constant c.
Therefore M̄ ⊂ expp(cUp) which is compact (contradiction). Therefore there exists a
minimal ray at every point p ∈ M̄ .

The existence of a line in general might not be true, the only extra property of
M̄ that we will need is that it has a (fundamental) domain K compact such that
M̄ = ⋃

σ∈Isom(M̄) σK.
Let us first prove that such domain K exists. Remark that every isometry of M

acts separately on M, i.e. of form σ(u) = (σ1(x), σ2(y)) for u = (x, y) ∈ M with
σ1, σ2 isometries of Rn and M̄ . This can be seen by the uniqueness part of de Rham
decomposition or simply by noticing that a tangent vector in the TxRn component is
characterized by the fact that its geodesics is a line. As the action of π1(M) on M
is free and proper, it has a fundamental domain H. We then can choose K to be the
projection of H on M̄ as M̄ = ⋃

σ=(σ1,σ2)∈π1(M) σ
2(H).

Now let γ be a minimal ray starting from p ∈ M , for each x ∈ γ there exists an
isometry σ of M̄ such that σ(x) ∈ K. By compactness of K, there exists a sequence
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5. Cheeger-Gromoll splitting

tn → +∞ with xn = γ(tn), vn = γ̇(tn) that satisfies yn = σn(xn) → y ∈ K and even
more, (σn)∗vn → v ∈ TyM̄ in the tangent bundle TM̄ . Then the geodesic of M̄ starting
at y with vector v is a line. In fact it suffices to prove that d(expy(tv), expy(−sv)) = s+t
for s, t > 0, but for n large enough that tn > s one has

d(expyn(tvn), expyn(−svn)) = s+ t

then let n→ +∞, one sees that M̄ contains a geodesic line, which is contradictory.
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6
BOGOMOLOV-BEAUVILLE

DECOMPOSITION

6.1 From the Riemannian results of de Rham and
Berger

We will first prove a (conceptually) straightforward result of de Rham decomposition
and Berger classification. The following theorem is taken from Beauville’s article.

Theorem 23 (Beauville). Let X be a compact Kähler manifold with flat Ricci curva-
ture, then

1. The universal covering space X̃ of X decomposes isometrically and holomorphi-
cally as

X̃ = E ×
∏
i

Vi ×
∏
j

Xj

where E = Ck, Vi and Xj are simply-connected compact manifolds of real dimen-
sion 2mi and 4rj with irreducible homonomy SU(mi) for Vi and Sp(rj) for Xj.
One also has uniqueness in the strong sense as in de Rham decomposition.

2. There exists a finite covering space X ′ of X such that

X ′ = T ×
∏
i

Vi ×
∏
j

Xj

where T is a complex torus.

Proof. Note that the first point is obtained directly from Cheeger-Gromoll splitting and
de Rham decomposition: The one-dimensional parallel subspaces (of trivial holonomy)
are regrouped to E. By Cheeger-Gromoll splitting, X̃ = E ×M where M contains
no line and is compact (note that we use compactness of X here). The irreducible
factors in M are not symmetric spaces as Ricci curvature of symmetric spaces is non-
degenerate. Holonomy of these factors are SU(mi) and Sp(rj) according to Berger list
since they are Kähler manifolds and Ricci-flat. It remains to prove the second point.

We will regard each element of π1(X) by its isometric, free, proper action on X̃. As
pointed out the arguments in our discussion of uniqueness of de Rham decomposition,
every isometry of X̃ to itself preserves the components Tx0E, Txi

Vi and Txj
Xj of TxX̃,

each isometry φ of X̃ is of form (φ1, φ2) where φ1 ∈ Isom(E) and φ2 ∈ Isom(M).
We will use here the fact that ifM is a Kähler manifold, compact and Ricci-flat then

Isom(M) equipped with compact-open topology is discrete, therefore finite, which will
be proved later (Lemma 25). We note Γ := {φ = (φ1, φ2) ∈ π1(X), φ2 = IdM} and
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6. Bogomolov-Beauville decomposition

sometime abusively regard Γ as a subgroup of Isom(E). Note that Γ is a normal
subgroup of π1(X) with finite index since the quotient is isomorphic to a subgroup of
Isom(M). Therefore X̃/Γ = E/Γ×M is compact as a finite cover of X.

We apply the following theorem of Bieberbach.
Theorem 24 (Bieberbach). Let E = Rn be an Euclidean space and Γ be a subgroup
of Isom(E) that satisfies

1. Γ is discrete under compact-open topology.

2. E/Γ is compact.

Then the subgroup Γ′ of translations in Γ is of finite index.
Suppose that the two conditions are satisfied then the theorem gives: X̃/Γ′ =

E/Γ′ ×M = T ×∏i Vi ×
∏
j Xj is a finite cover of X̃/Γ as Γ′ is a normal subgroup of

Γ:
Fact. The subgroup of translations in Isom(E), where E = Rn is an Euclidean

space, is normal.
Therefore X ′ = X̃/Γ′ is a finite cover of X that we want to find.

It remains to prove that Γ is discrete, which is a consequence of

1. π1(X) is discrete, without limit point in Isom(E)× Isom(M) (obvious).

2. Isom(M) is compact.

In fact given any φ = (φ1, φ2) ∈ Isom(E) × Isom(M), there exists by (1.) a neigh-
borhood U1(φ1, φ2) × U2(φ1, φ2) of φ in Isom(E) × Isom(M) such that all points of
π1(X) lying in this region project to φ1. By (2.) we can find a neighborhood U1 of
φ1 in Isom(E) small enough such that U1(φ1)× Isom(M) ⊂ ∪φ2∈Isom(M)U1(φ1, φ2)×
U2(φ1, φ2). Therefore the projection of π1(X) to Isom(E) is discrete, by consequence
Γ is discrete.

Lemma 25. Let M be is a compact, simply-connected, Ricci-flat, Kähler manifold,
then the group Aut(M) of automorphism of M equipped with compact-open topology is
discrete, therefore Isom(M) is discrete, hence finite.

Proof. The idea is that since Aut(M) is a Lie group, it suffices to prove that its Lie
algebra is of dimension 0. This is done using these facts.

1. The Lie algebra of Aut(M) can be identified with the vector space of holomorphic
vector fields on M .

2. Bochner’s principle: All holomorphic tensor fields on a compact, Ricci-flat Käh-
ler manifold are parallel.

3. The only invariant vector of the holonomy representation of M is 0 (obvious).
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6. Bogomolov-Beauville decomposition

Bochner principle for holomorphic vector fields comes from the following identity
(called Weitzenbock formula):

∆(1
2‖X‖

2) = ‖∆X‖2 + g(X,∇divX) +Ric(X,X)

for every vector field X. If X is holomorphic then it is harmonic and has divX = 0.
The fact that M is Ricci-flat gives ∆(1

2‖X‖
2) = ‖∇X‖2 and the function ‖X‖2 is

subharmonic, therefore constant since M is compact. We then have ∇X = 0,i.e. X is
parallel. The method of Bochner also works for tensor fields of any type in a Ricci-flat
Kähler manifold and one also obtains ∆(‖τ‖2) = ‖∇τ‖2 and that every holomorphic
tensor field is parallel. See [Pet06, Chapter 7] and [Bes07, Paragraph 1.156 page 57,
Lemma 14.17 page 399] for more details.

6.2 Towards a classification for complex mani-
fold

To obtain a translation of Theorem 23 in a context of complex manifolds (without any
preferred metric a priori), we study the 2 building blocks: manifolds with holonomy
SU(m) and Sp(r). To be clear, recall that a complex manifold X is called of Kähler
type if one can equip X with an Hermitian structure whose fundamental form ω
satisfies dω = 0. When we say X is of Kähler type, we refer to X as a complex
manifold without fixing a metric on X.

6.2.1 • Special unitary manifolds (proper Calabi-Yau man-
ifolds)
Remark 11. Let X be a compact Kähler manifold with holonomy SU(m) and complex
dimension m ≥ 3 then:

1. H0(X,Ωp
X) = 0 for all 0 < p < m and consequently χ(OX) = 1 + (−1)m.

2. X is projective, i.e. X can be embedded into CPN as zero-locus of some (finitely)
homogeneous polynomials.

3. π1(X) is finite and if m is even, X is simply connected.

The first point is in fact algebraic in nature: it comes from the fact that the
representation of SU(m) over ∧p T ∗xM is irreducible for all p et non-trivial for 0 < p <
m, therefore the action of SU(m) on ∧p T ∗xM for 0 < p < m has no invariant element,
hence H0(X,Ωp

X) = 0.
The second point follows from the following non trivial facts that we shall admit:

1. (Kodaira embedding theorem) A compact Kähler manifold with H2,0 = 0 can be
embedded in PN .
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2. (Chow’s theorem) A compact complex manifold embedded in PN is algebraic,
i.e. defined by a finite number of homogeneous polynomials.

The third point is a consequence of Riemann-Hurwitz formula. In fact, the uni-
versal cover X̃ of X is of holonomy SU(m). This is due to the following remarks:
Hol(X) ⊃ Hol(X̃) ⊃ Hol0(X̃) = Hol0(X) and Hol0(X) is the identity component of
Hol(X), which is also Hol(X) as SU(m) is connected.

By Theorem 23, X̃ is compact as its holonomy has no trivial component. By
Lemma 25, π1(X) is finite therefore X̃ is a finite cover of X. As χ(OX) = χ(OX̃) = 2,
one has X = X̃, hence X is simply-connected.

Theorem 26. Given a compact manifold X of Kähler type and complex dimension
m, the following properties are equivalent

1. There exists a compatible metric g over X such that Hol(X, g) = SU(m).

2. KX is trivial and H0(X ′,Ωp
X′) = 0 for every 0 < p < m and any X ′ finite cover

of X.

Proof. (1) implies (2) as a finite covering space X ′ of a special unitary manifold X is
still a special unitary.

For the implication (2) =⇒ (1): by Yau’s theorem we equip X with a Ricci-flat
metric, by Theorem 23, there exists a finite cover X ′ = T × ∏i Vi ×

∏
j Xj where T

is a complex torus, Hol(Vi) = SU(mi), Hol(Xj) = Sp(rj). But H0(X ′,Ωp
X′) = 0 for

0 < p < m, X ′ has to be one of the Vi as H0(Xj,Ω2
Xj

) and H0(Vi,Ωmi
Vi

) do not vanish.
Therefore Hol(X ′) = SU(m), hence Hol(X) = SU(m).

Theorem 26 allows us to check if a manifold X is special unitary by looking at the
h0,p(0 < p < m) coefficients of the Hodge diamond of X and its finite covers. We can
see, by this criteria that the following examples are special unitary manifolds.

Example 1 (Special unitary manifolds). 1. Elliptic curves over C are special uni-
tary, as any statement starting with "for every 0 < p < 1" is formally true.

2. A K3 surface (simply-connected surface with trivial canonical bundle) is special
unitary, its Hodge diamond is given below. K3 surface may not be projective but
are Kähler.

3. A quintic threefold (hypersurface of degree 5 in 4-dimensional projective space) is
a special unitary manifold, the Hodge diamond of which is given is given below.
In particular, the Fermat quintic defined by

{(z0 : z1 : z2 : z3 : z4) ∈ CP4 :
∑

z5
i = 0}

4. In general, any smooth hypersurface X of CPm+1 of degree m+2 satisfies h0,p = 0
for all 0 < p < m. If X is simply-connected then it is a special unitary manifold.
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6. Bogomolov-Beauville decomposition

Table 1: Hodge diamond of a K3 surface.
1

0 0
1 20 1

0 0
1

Table 2: Hodge diamond of a quintic threefold.
1

0 0
0 1 0

1 101 101 1
0 1 0

0 0
1

6.2.2 • Irreducible symplectic and hyperkähler manifolds
Remark 12. Let X be a compact Kähler manifold with holonomy Sp(r) and complex
dimension 2r then:

1. There exists a holomorphic 2-form ϕ non-degenerate at every points.

2. H0(X,Ω2l+1
X ) = 0, H0(X,Ω2l

X) = Cϕl for all 0 ≤ l ≤ r. By consequence χ(OX) =
r + 1.

3. X is simply-connected.

The first point of the remark follows directly from our discussion of Berger classi-
fication.

The second point is algebraic in nature: The representation of Sp(r) on ∧p T ∗xM
splits into

p∧
T ∗xM = Pp ⊕ Pp−2ϕ(x)⊕ Pp−4ϕ

2(x)⊕ . . . (10)

where Pk, 0 ≤ k ≤ r are irreducible, non-trivial representations for k > 0 and ϕ(x) ∈∧2 T ∗xM uniquely defined up to a constant (see [Bou06, § 13, no 3]). Therefore the
only invariant elements are cϕp/2 where c is a scalar.

For the last point, one uses the same arguments as Remark 11.

Theorem 27. Given a compact manifold X of Kähler type and complex dimension
2r, then:

1. The following properties are equivalent. X is called hyperkähler if it satisfies one
of them.

(a) There exists a compatible metric g such that Hol(X, g) ⊂ Sp(r).
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6. Bogomolov-Beauville decomposition

(b) There exists a compatible symplectic structure: a 2-form that is closed, holo-
morphic and non-degenerate at every point.

2. The following properties are equivalent. X is called irreducible symplectic if it
satisfies one of them.

(a) There exists a compatible metric g such that Hol(X, g) = Sp(r)
(b) X is simply-connected and there exists (uniquely up to a constant) a com-

patible symplectic structure on X.

By "compatible", we mean "compatible with the complex structure".

Proof. 1. The fact that (a) implies (b) is obvious. For the other way: since KX is
trivial (existence of global non-null section) by Yau’s theorem we equip X with
a Ricci-flat metric, then the symplectic structure ϕ of X is parallel by Bochner’s
principle. Hence the holonomy is in Sp(r).

2. For the implication (a) =⇒ (b), it suffices to notice that the invariant elements
ϕ in the decomposition (10) is unique. For the direction (b) =⇒ (a), note
that X can be equipped with a Calabi-Yau metric by the (b) =⇒ (a) part of
(1.). By Theorem 23, X = ∏m

j=1Xj where Xj are irreducible compact Kähler
manifolds. The symplectic structure ϕ on X, restricted on each Xj, gives a
symplectic structure ϕj of Xj. But any form ∑

j λjpr
∗
jϕj is another symplectic

structure of X, one must have m = 1 by uniqueness of ϕ.

Example 2. Only very few examples are known.

1. One can notice a trivial example: Every special unitary manifold of 2 complex
dimensions is irreducible symplectic because SU(2) is isomorphic to Sp(1).

2. Let X be a smooth cubic hypersurface in CPn+1 and

F (X) = {L ∈ Gr(1,CPn+1), L ⊂ X} ⊂ Gr(1,CPn+1)

the manifold formed by lines in X. F (X) is non-empty when n > 1, smooth if
X is smooth and of dimension 2n− 4. In [BD85], Beauville and Donagi proved
(we admit the proof) that for n = 4, F (X) is irreducible symplectic and therefore
hyperkähler.

6.2.3 • Decomposition for complex manifold with vanishing
Chern class
Theorem 23 can be translated to a decomposition for complex manifold in the following
way:

Theorem 28 (Bogomolov-Beauville classification). Let X be a compact manifold of
Kähler type of vanishing first Chern class.
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1. The universal covering space X̃ of X is isomorphic to a product E×∏i Vi×
∏
j Xj

where E = Ck and

(a) Each Vi is a projective simply-connected manifold of complex dimension
mi ≥ 3, with trivial KVi

and H0(Vi,Ωp
Vi

) = 0 for 0 < p < mi

(b) Each Xj is an hyperkähler manifold.

This decomposition is unique up to an order of i and j.

2. There exists a finite cover X ′ of X isomorphic to the product T ×∏i Vi×
∏
j Xj.

The theorem follows directly from Theorem 23, the only point that needs proof is
the uniqueness, which will be achieved in two steps:

1. Prove the uniqueness in the case that X is simply-connected.

2. Prove that every isomorphism φ : Ck × Y −→ Ch×Z is splitted as φ = (φ1, φ2)
where φ1 : Ck −→ Ch and φ2 : Y −→ Z are isomorphisms (by consequence
h = k).

These two steps will be accomplished in the following two lemmas

Lemma 29. Let Y = ∏
j Yj be a finite product of compact, simply-connected manifold

of Kähler type with vanishing Chern class. The Calabi-Yau metrics of Y are then
g = ∑

l pr
∗
jgj where gj are Calabi-Yau metrics of Yj.

Proof. Let g be a Calabi-Yau metric of Y and [ω] its class in H1,1(Y ). Since Yj are
simply-connected, [ω] = ∑

j pr
∗
j [ωj]. By Yau’s theorem, there exist unique Calabi-Yau

metrics gj of Yj in each class [ωj]. The metric g′ = ∑
j pr

∗
jgj is in the same class ω of

g and is also a Calabi-Yau metric, hence g = g′ = ∑
j pr

∗
jgj.

This lemma asserts that when our manifolds Y, Yj are equipped with appropri-
ate Calabi-Yau metrics, the decomposition map is also a (Riemannian) isometric, we
therefore obtain uniqueness of Vi, Xj from uniqueness of Theorem 23.

Lemma 30. Let Y, Z be compact, simply-connected manifold of Kähler type, then any
isomorphism u : Ck × Y −→ Ch ×Z is splitted as φ = (φ1, φ2) where φ1 : Ck −→ Ch

and φ2 : Y −→ Z are isomorphisms.

Proof. It is clear that the composed function u1 : Ck × Y −→ Ch × Z −→ Ch is
constant in Y , i.e. u1(t, y) = u1(t) as holomorphic functions on Y are constant,
therefore u(t, y) = (u1(t), u2(t, y)). As u is isomorphic, one has h ≤ k then by the same
argument for u−1, one has h = k, u1 is an isomorphism and u2(t, ·) is an isomorphism
from Y to Z. u2(0, ·)−1 ◦u2(t, ·) is then a curve in Aut(Y ), which is discrete by Lemma
25. Therefore u2(t, ·) = u2(0, ·) is independent of t.
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7
FURTHER DEVELOPMENTS

7.1 Decomposition theorem in case of non-negative
Ricci curvature

Theorem 28 is generalized by Campana, Demailly and Peternell in [CDP12] for man-
ifold with non-negative Ricci curvature or equivalently, for manifolds with Hermitian
semipositive anticanonical bundle in the complex point of view.

We noticed that the statement of Theorem 1.4 in [CDP12] was not accurate and
we propose a new formulation. Further details will appear somewhere else.

Theorem 31. Let X be a compact Kähler manifold with K−1
X Hermitian semipositive

then the universal cover X̃ decomposes isometrically and holomorphically into

X̃ = Cq ×
∏
Yj ×

∏
Sk ×

∏
Zl ×

∏
Wr

where Yj, Sk, Zl are compact, simply-connected Kähler manifolds. Yj are proper Calabi-
Yau (holonomy SU(nj)), Sk are hyperkähler (holonomy Sp(n′k/2)), Zl are rationally
connected with K−1

Zl
semipositive (holonomy U(n′′l )), and Wr are compact Hermitian

symmetric spaces (that are also rationally connected).

Remark 13. Each Wr is one of the following Hermitian symmetric spaces

1. SU(p+ q)/S(U(p)× U(q)),

2. SO(p+ 2)/SO(p)× SO(2),

3. SO(2n)/U(n),

4. Sp(n)/U(n),

5. E6/SO(10)× SO(2),

6. E7/E6 × SO(2).

As symmetrics spaces have positive-definite Ricci curvature ([KN63, Corollary 8.7 page
258, volume 2]), the Wr have positive K−1

Wr
hence are Fano varieties. By a result of

Kollár-Miyaoka-Mori (see [KMM92]), they are rationally-connected.

Sketch of proof. One follows the same strategy by A. Beauville. Compared with The-
orem 23,

1. One can not eliminate the irreducible symmetric blocks, since they have positive
Ricci curvature.
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2. Berger list gives the additional blocks Zl of holonomy U(n′′l ).

One then studies the new blocks Zl as a complex manifolds, as we did in 6.2.1 and
6.2.2 and proves that a Kähler manifold Z that has a compatible metric under which
the holonomy is U(n) is actually rationally connected.

Remark 14. We note that unlike Theorem 26 and Theorem 27, the rational connected-
ness is not a characterization of manifold of holonomy U(n) as a complex manifold. In
order words, it is not proved in [CDP12] that a compact, rationally connected, Kähler
manifold can be equipped with a compatible metric whose holonomy is U(n).

It is therefore not a surprise that one can not say anything about uniqueness in
Theorem 31.

7.2 Decomposition theorem for singular spaces
and klt varieties

The Decomposition Theorem 28 is also generalized for singular spaces in [GKP11] and
for klt varieties in [GKP11] by Daniel Greb et al. They are noticeably different with
Theorem 28 in the following ways:

1. They are decompositions of tangent sheaf, therefore should be seen as an in-
finitesimal analogue of Bogomolov-Beauville’s results.

2. One does not decompose the tangent sheaf of a finite cover of the manifold X,
but rather the tangent sheaf of X̃ such that an existing A × X̃ is a finite cover
of X and A is an Abelian variety.
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7. Further developments

APPENDICE: PRINCIPAL BUNDLE

Definition and relation with vector bundle

Definition 7. Given a group G and a manifold M , a principal bundle P = (M,G) of
fiber G over M is a bundle where

1. Each fibre is G (in an atlas).

2. Action of G by right-multiplication in local charts is well-defined.

Here is another way to state the second point: let φij : G −→ G be the change of
fibre from chart j to chart i, the right-multiplication by g is well defined if and only if
φij(h)g = φij(hg) which means φij is a left-multiplication, that we can abusively note
by h 7→ φijh where φij ∈ G satisfying the cocycle condition.

A homomorphism f : P1 = (M1, G1) −→ P2 = (M2, G2) of principal bundles is the
data of

1. a group homomorphism f : G1 −→ G2.

2. a homomorphism of bundle also noted by f : P1 −→ P2 such that f(ga) =
f(g)f(a).

In particular, a principal sub-bundle of P = (M,G) is a principal bundle P ′ =
(M,H) where H is a subgroup of G such that there exists an injection f : P ′ −→ P
whose group homomorphism is the injection of H to G. P ′ can be regarded as a subset
of P such that each fiber is H. In this case, one says that P has a H-structure, or
equivalently there exists an atlas of P with all φij ∈ H.

We now relate the notion of principal bundle and vector bundle. Given a vector
bundle E fibered by a vector space V over a manifold M , we regard E since Riemann
as the data of φij : Ui∩Uj ×V −→ Ui∩Uj ×V that satisfy the cocycle condition for a
covering of M by open sets Ui. As φij can also be interpreted as function from Ui ∩Uj
to GL(V ), a vector bundle is nothing else than a principal bundle of fiber GL(V ). The
corresponding principal bundle to is called the frame bundle of E.

One can also construct a bundle from a principal bundle P of fiber G and a manifold
F with action of G on the left (typically a representation of G) by taking

P ×G F = P × F/(u, v) ∼ (ug, g−1v)

which is a bundle with fiber F .

Remark 15. 1. If we take P to be the frame bundle of a vector bundle E of fiber
V , and F = V with action of G = GL(V ) on the left then

P ×GL(V ) V = E
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7. Further developments

2. We will see later that a connection on P gives a connection on P ×GF , by taking
F = T rs (V ) = ⊗r V ⊗⊗s V ∗, we can extend a connection on the tangent fiber to
all tensor fiber.

3. One has P ×G G/H = P/H and there is a 1-1 correspondence between the H-
structures of P and the global sections of P/H.

Connection on principal bundle

Definition 8. A connection D on a principal bundle P of fiber G over manifold M
is a distribution of subspaces Hp ⊂ TpP in every points p ∈ TP such that

1. TpP = Hp ⊕ Vp where Vp is the tangent of the fiber passing by p.

2. The plans are stable by G i.e. Hgp = g∗Hp for all p ∈ P, g ∈ G.

Clearly Vp = kerTπP→M , one has TπP→M : Vp −→ Tπ(p)M is bijective, that means
every tangent vector of M at πP→M(p) can be lifted to the tangent space at p in a
unique way.

Moreover one can also lift a curve in M to P .

Definition 9 (Lemma). Let x0 ∈M and p0 ∈ P such that πP→Mp0 = x0 then for any
C1-curve γ parameterized by [0, 1] in M with γ(0) = x0, there exists a unique curve γ̃
in P such that γ̃(0) = p0, γ̃(t) is projected to γ(t) and γ̇ is lifted to ˙̃γ.

We define γ̃(1) to be the parallel transport of p0 by the curve γ and connection D.

We now relate the previous definitions with what are already seen in the course
MAT568 (Relativité générale). It is easy to see that to define a connection as a
covariant derivative ∇ and parallel transport as the solution of the system ∇γ̇X = 0
with X(0) = p0 are the same as to define a connection as the a distribution of plans
Hp ⊂ Tp(TM) of same dimension as M such that Hλ1p1+λ2p2 = λ1Hp1 + λ2Hp2 and to
define parallel transport by the lift γ̄ of γ with ˙̄γ ∈ Hp (see [Pau14] for example). It
remains to see how a distribution of planes in TTM correspond to a distribution of
plan in TP when P is the frame bundle of M .

We note π : P ×V −→ P ×GL(V ) V = TM and remark that and T(p,v)π transforms
Vp⊕ TvV ⊂ Vp⊕Hp⊕ TvV = T(p,v)(P × V ) to the vertical plan Vπ(p,v) ⊂ Tπ(p,v)TM by
the following heuristics:

πMπ(p, v) = πMπ(p(1 + δg, v + δv) = πMπ(p, v) + TπMT(p,v)π.pδg + TπMT(p,v)π.δv

where πM is the projection from TM toM , pδg ∈ Vp and δv ∈ TvV . By the fact that π
is submersion and by dimension, Tp,vπ sendsHp to horizontal planHπ(p,v) ⊂ Tπ(p,v)TM .

As an example, we indicate concretely how to transport along a curve γ in M a
vector v0 tangent toM at x0 ∈ γ, knowing the connection on P : We firstly pull back v0
to a (p0, v0) ∈ P ×V (there are more than one choice, but every choice of (p0, v0) gives
the same result). We then keep v0 constant and transport p0 using the connection of
P . We finally project the result to TM using π.
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7. Further developments

If γ is a closed curve, a point p0 ∈ P over x0 ∈ M will be transported to p0g
The elements g ∈ G obtained by this ways are independent of p0 and form a group,
called the holonomy group at x0 corresponding to connection D. If there is no further
indication, we will only consider the holonomy group corresponding to Levi-Civita
connection on a Riemannian manifold M , which will be denoted by Hol(M,x).

Remark 16. Note that given a Riemannian manifold M and ∇ its Levi-Civita con-
nection

1. We have just defined the holonomy group Hol(M,x) as a subgroup of GL(TxM),
that is by giving a faithful representation of it.

2. For any x, y ∈M a curve γ that connects x and y gives an isomorphism between
Hol(M,x) and Hol(M, y). So the representation/group structure of Hol(M,x)
does not depend on x and therefore will be noted by Hol(M).

3. Using ∇g = 0, one can see that parallel transport preserves inner product, there-
fore Hol(M) is contained in O(n) or even SO(n) if M is orientable.

Here is a concrete interpretation of connection taken from [Ber03] in case of M
being a surface in R3 with the inducted metric. Let γ be a curve on M and X a
parallel vector field along γ, if one roll a tangent plan tangent P along the curve and
note by γ∗ and X∗ the images of γ and X traced on P then X∗ is a constant field
along γ∗.
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